Fuzzy Inference Process

Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy
logic. The mapping then provides a basis from which decisions can be made, or patterns discerned.
The process of fuzzy inference involves all the pieces that are described in Membership

Functions, Logical Operations, and If-Then Rules.

This section describes the fuzzy inference process and uses the example of the two-input, one-output,
three-rule tipping problem from The Basic Tipping Problem. The basic structure of this example is
shown in the following diagram:

Dinner for Two
a 2 input, 1 output, 3 rule system

If service is poor or food is rancid,
L2l then tip is cheap.

Input 1

Service (0-10)

Rule 2 If service is good, then tip is average.

AN
Input 2 /

Output
Tip (5-25%)

Food (0-10)

Rule If service is excellent or food is
delicious, then tip is generous.

The inputs are crisp All rules are The results of the The resultis a
{non-fuzzy) evaluated in parallel rules are combined crisp (non-fuzzy)
numbers limited to a using fuzzy and distilled number.

specific range. reasoning. (defuzzified).

Information flows from left to right, from two inputs to a single output. The parallel nature of the rules is
an important aspect of fuzzy logic systems. Instead of sharp switching between modes based on
breakpoints, logic flows smoothly from regions where one rule or another dominates.

Fuzzy inference process comprises of five parts:

Fuzzification of the input variables

Application of the fuzzy operator (AND or OR) in the antecedent

Implication from the antecedent to the consequent

Aggregation of the consequents across the rules

Defuzzification

A fuzzy inference diagram displays all parts of the fuzzy inference process — from fuzzification
through defuzzification.

Fuzzify Inputs

The first step is to take the inputs and determine the degree to which they belong to each of
the appropriate fuzzy sets via membership functions. In Fuzzy Logic Toolbox™ software, the
input is always a crisp numerical value limited to the universe of discourse of the input
variable (in this case, the interval from 0 through 10) . The output is a fuzzy degree of
membership in the qualifying linguistic set (always the interval from 0 through 1).
Fuzzification of the input amounts to either a table lookup or a function evaluation.

file:///C:/Program%20Files/MATLAB/R2018a/help/fuzzy/foundations-of-fuzzy-logic.html%23bp78l70-2
file:///C:/Program%20Files/MATLAB/R2018a/help/fuzzy/foundations-of-fuzzy-logic.html%23bp78l70-2
file:///C:/Program%20Files/MATLAB/R2018a/help/fuzzy/foundations-of-fuzzy-logic.html%23bp78l70-5
file:///C:/Program%20Files/MATLAB/R2018a/help/fuzzy/foundations-of-fuzzy-logic.html%23bp78l70-7
file:///C:/Program%20Files/MATLAB/R2018a/help/fuzzy/building-systems-with-fuzzy-logic-toolbox-software.html%23brzqs45
file:///C:/Program%20Files/MATLAB/R2018a/help/fuzzy/fuzzy-inference-process.html%23FP346
file:///C:/Program%20Files/MATLAB/R2018a/help/fuzzy/fuzzy-inference-process.html%23FP347
file:///C:/Program%20Files/MATLAB/R2018a/help/fuzzy/fuzzy-inference-process.html%23FP348
file:///C:/Program%20Files/MATLAB/R2018a/help/fuzzy/fuzzy-inference-process.html%23a1054218661b1
file:///C:/Program%20Files/MATLAB/R2018a/help/fuzzy/fuzzy-inference-process.html%23a1054218744b1
file:///C:/Program%20Files/MATLAB/R2018a/help/fuzzy/fuzzy-inference-process.html%23FP350

This example is built on three rules, and each of the rules depends on resolving the inputs into
several different fuzzy linguistic sets: service is poor, service is good, food is rancid, food is
delicious, and so on. Before the rules can be evaluated, the inputs must be fuzzified according
to each of these linguistic sets. For example, to what extent is the food delicious? The
following figure shows how well the food at the hypothetical restaurant (rated on a scale from
0 through 10) qualifies as the linguistic variable delicious using a membership function. In
this case, we rate the food as an 8, which, given the graphical definition of delicious,
corresponds to u = 0.7 for the delicious membership function.

0.7
1. Fuzzify
inputs. delicious Result of
fuzzification

food is delicious

food =8
input

In this manner, each input is fuzzified over all the qualifying membership functions required
by the rules.

Apply Fuzzy Operator

After the inputs are fuzzified, you know the degree to which each part of the antecedent is
satisfied for each rule. If the antecedent of a rule has more than one part, the fuzzy operator is
applied to obtain one number that represents the result of the rule antecedent. This number is
then applied to the output function. The input to the fuzzy operator is two or more
membership values from fuzzified input variables. The output is a single truth value.

As is described in Logical Operations section, any number of well-defined methods can fill in
for the AND operation or the OR operation. In the toolbox, two built-in AND methods are
supported: min (minimum) and prod (product). Two built-in OR methods are also

supported: max (maximum), and the probabilistic OR method probor. The probabilistic OR
method (also known as the algebraic sum) is calculated according to the equation:

probor(a,b)=a+b-ab

In addition to these built-in methods, you can create your own methods for AND and OR by
writing any function and setting that to be your method of choice.

The following figure shows the OR operator max at work, evaluating the antecedent of the
rule 3 for the tipping calculation. The two different pieces of the antecedent (service is
excellent and food is delicious) yielded the fuzzy membership values 0.0 and 0.7 respectively.
The fuzzy OR operator simply selects the maximum of the two values, 0.7, and the fuzzy
operation for rule 3 is complete. The probabilistic OR method would still result in 0.7.

file:///C:/Program%20Files/MATLAB/R2018a/help/fuzzy/foundations-of-fuzzy-logic.html%23bp78l70-5

1. Fuzzify 2. Apply

inputs. OR operator (max).
excellent
0.7
delicious result of
fuzzy operator
service is excellent food is delicious

service=3 food =8

input 1 input 2

Apply Implication Method

Before applying the implication method, you must determine the rule weight. Every rule has
a weight (a number from 0 through 1), which is applied to the number given by the
antecedent. Generally, this weight is 1 (as it is for this example) and thus has no effect on the
implication process. However, you can decrease the effect of one rule relative to the others by
changing its weight value to something other than 1.

After proper weighting has been assigned to each rule, the implication method is
implemented. A consequent is a fuzzy set represented by a membership function, which
weights appropriately the linguistic characteristics that are attributed to it. The consequent is
reshaped using a function associated with the antecedent (a single number). The input for the
implication process is a single number given by the antecedent, and the output is a fuzzy set.
Implication is implemented for each rule. Two built-in methods are supported, and they are
the same functions that are used by the AND method: min (minimum), which truncates the
output fuzzy set, and prod (product), which scales the output fuzzy set.

Antecedent Consequent
1. Fueafy 2. Apply 3. Applyh
. OR Implication
inputs. operator (max). operdor (min),
service is excellert or food is defcious then result of
implication
service = 3 food =8
input 1 input 2

Note
Sugeno systems always use the product implication method.

Aggregate All Outputs

Since decisions are based on testing all the rules in a FIS, the rule outputs must be combined
in some manner. Aggregation is the process by which the fuzzy sets that represent the outputs
of each rule are combined into a single fuzzy set. Aggregation only occurs once for each

output variable, which is before the final defuzzification step. The input of the aggregation
process is the list of truncated output functions returned by the implication process for each
rule. The output of the aggregation process is one fuzzy set for each output variable.

As long as the aggregation method is commutative, then the order in which the rules are
executed is unimportant. Three built-in methods are supported:

max (maximum)

probor (probabilistic OR)

sum (sum of the rule output sets)

In the following diagram, all three rules are displayed to show how the rule outputs are
aggregated into a single fuzzy set whose membership function assigns a weighting for every
output (tip) value.

2. Apply 3. Apply
1. Fuzzify inputs. fuzzy implication
operation method {min).
| | (OR = max).
' [] poor rancid] cheap
g 30%
‘ If service is poor or food is rancid then tip= chaap
| average
2 L rule 2 has
no dependency
good | on input 2
0 30%
‘ If service is good then tnp average |
excellent
3 . i enerous
delicious g
Q 30% 0 30% 4. Apply
| If serviceis excellent or food is delicious then tip = generous ‘ aggregation

method (max).

service=3 food =8

input 1 input 2

° Result of 0%
aggregation

Note

Sugeno systems always use the sum aggregation method.

Defuzzify

The input for the defuzzification process is a fuzzy set (the aggregate output fuzzy set) and the
output is a single number. As much as fuzziness helps the rule evaluation during the
intermediate steps, the final desired output for each variable is generally a single number.
However, the aggregate of a fuzzy set encompasses a range of output values, and so must be
defuzzified to obtain a single output value from the set.

There are five built-in defuzzification methods supported: centroid, bisector, middle of
maximum (the average of the maximum value of the output set), largest of maximum, and
smallest of maximum. Perhaps the most popular defuzzification method is the centroid
calculation, which returns the center of area under the curve, as shown in the following:

5. Defuzzify the

aggregate output

0 309 (centroid).

tip = 16.7%

Result of

defuzzification

While the aggregate output fuzzy set covers a range from 0% though 30%, the defuzzified
value is between 5% and 25%. These limits correspond to the centroids of
the cheap and generous membership functions, respectively.

Fuzzy Inference Diagram

The fuzzy inference diagram is the composite of all the smaller diagrams presented so far in
this section. It simultaneously displays all parts of the fuzzy inference process you have
examined. Information flows through the fuzzy inference diagram as shown in the following
figure.

Interpreting the
fuzzy inference
diagram

|nput1 | |nput2 |

-]

In this figure, the flow proceeds up from the inputs in the lower left, across each row, and then
down the rule outputs in the lower right. This compact flow shows everything at once, from
linguistic variable fuzzification all the way through defuzzification of the aggregate output.

The following figure shows the actual full-size fuzzy inference diagram. Using a fuzzy
inference diagram, you can learn a lot about how the system operates. For instance, for the
particular inputs in this diagram, you can see that the implication method is truncation with
the min function. The max function is used for the fuzzy OR operation. Rule 3 (the bottom-
most row in the diagram shown previously) has the strongest influence on the output. The
Rule Viewer described in The Rule Viewer is an implementation of the fuzzy inference
diagram.

file:///C:/Program%20Files/MATLAB/R2018a/help/fuzzy/building-systems-with-fuzzy-logic-toolbox-software.html%23FP484

2. Apply

Y fuzzy 3. Apply
1. Fuzzify inputs. Seraﬁon implication
(OR = max). method (min).
1 . poor rancid ‘ cheap |
o 10 0 10 0% 30% 0% 30%
If service is poor or food is rancid then tip = cheap
average, . |
2 - rule 2 has ’ \ |
no dependency
good oninput 2 |
0 | 10 0%
If service is good then tip = average
excellent
generous |
delicious |
. -
30% 0% 30% 4. Apply
If service is excellent or food is delicious then tip = generous aggregation
method (max).
service = 3 food = 8
input 1 input 2 “
5. Defuzzify

tip = 16.7% 0% a0 (centroid).

output

